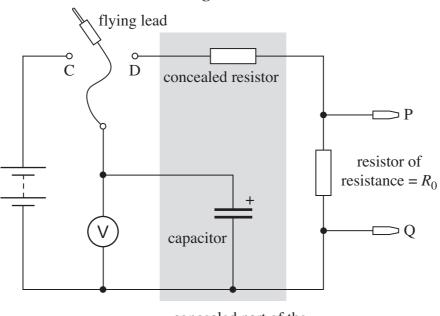
Section A Part 2

Follow the instructions given below.


Answer **all** the questions in the spaces provided.

No description of the experiment is required.

In this experiment you are to investigate the discharge of a capacitor through different combinations of resistors.

You are provided with the circuit shown in **Figure 4**, part of which is concealed, as shown by the shaded region on the diagram.

Figure 4

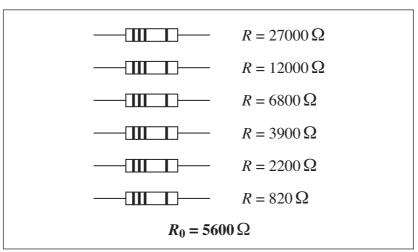
concealed part of the circuit shown shaded

1 (a) Charge the capacitor by connecting the flying lead to terminal C. The voltmeter will show a steady reading.

Connect the flying lead to terminal D so that the capacitor discharges through the concealed resistor and the resistance R_0 .

The voltmeter reading will be seen to fall exponentially.

Make suitable measurements to determine	T_0 , the time	for the	voltmeter	reading to
decrease by 50%.				


•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 •

 $T_0 = \dots$

(1 mark)

1 (b) You are provided with a postcard to which six resistors have been attached; the resistance, R, of each of these is printed on the card, as shown in **Figure 5**.

Figure 5

Connect the resistor with $R = 27000 \Omega$ between clip P and clip Q so that it is in parallel with resistor R_0 .

Using the same procedure for charging and then discharging the capacitor as before, make suitable measurements to obtain T, the time for the voltmeter reading to decrease by 50%.

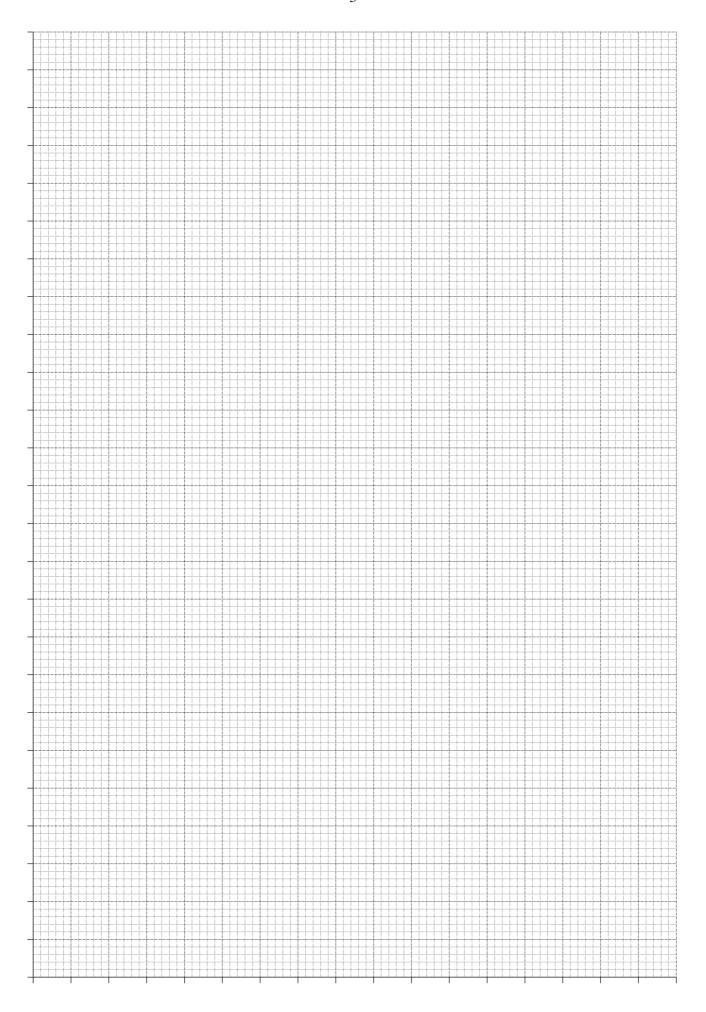
Repeat the procedure using each resistor, in turn, between P and Q, until you have obtained values of T for all six resistors.

Record your measurements and observations below.

(4 marks)

1 (c) Use the value of R_0 printed on the postcard to calculate values of $\frac{R}{R+R_0}$ that correspond to each of your values for T.

Record these data below.


(2 marks)

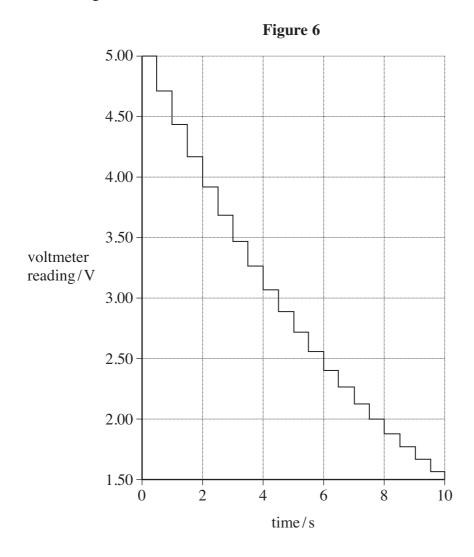
1 (d) Plot, on the grid opposite, a graph with $\frac{R}{R+R_0}$ on the vertical axis and T on the horizontal axis.

(*9 marks*)

16

END OF QUESTIONS

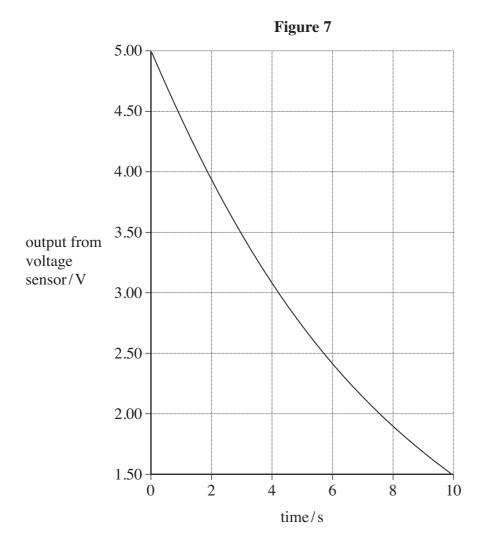
Section B


Answer all the questions in the spaces provided.

You will need to refer to the work you did in Section A Part 2 when answering these questions.

1 (a) (i)	Determine the gradient, G , of your graph of $\frac{R}{R+R_0}$ against T .	
	$G = \dots$	(2 marks)
1 (a) (ii)	Calculate GT_0 .	
	$GT_0 = \dots$	(2 marks)
1 (b)	When no resistor is connected between clip P and clip Q, the time, T , for the reading to fall by $50\% = T_0$.	e voltmeter
1 (b) (i)	State the value of R when $T = T_0$.	
1 (b) (ii)	Explain how T_0 could be obtained from your graph of $\frac{R}{R+R_0}$ against T .	(1 mark)
		(1 mark)
	Turn over for the next question	

- A student carried out the experiment on Section A Part 2, making measurements to determine the time, *T*, for the voltmeter reading to fall by 50% for different values of *R*, including smaller values than you used.
 - The digital voltmeter used by the student had certain characteristics that may have introduced uncertainty in the measurements of T.
- **2** (a) The first characteristic is the *sample rate*; this is the rate at which readings are transferred to the display of the meter. For the type of digital voltmeter used, a typical sample rate is 2 Hz.

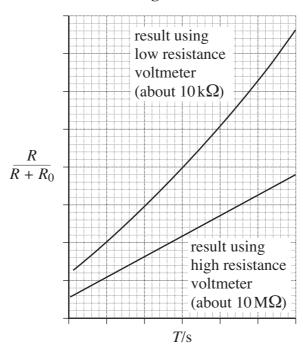

Figure 6 shows how the voltmeter reading varied with time as the capacitor was discharged.

2 (a) (i)	Explain how Figure 6 shows that the sample rate of the voltmeter is 2 Hz.
	(1 mark)

2 (a) (ii)	With reference to Figure 6 , outline one difficulty that the student would find when measuring <i>T</i> using the readings displayed on the voltmeter.
	(2 marks)
2 (a) (iii)	A teacher suggests that the student should wait until the voltmeter reading has fallen by 75% before stopping the watch.
	Explain how the value of <i>T</i> can be obtained using this method and explain why the uncertainty in the result would be reduced.
	(2 marks)
	Question 2 continues on the next page

A different student replaced the digital voltmeter with a voltage sensor connected to a data logger. The results of this experiment are shown in **Figure 7**.

2	. , . ,	Explain why the results displayed in Figure 7 show a continuous curve whereas those represented in Figure 6 show a stepped line.
		(1 mark)


2 (b) The second characteristic of the meter that affects the measurements of T is the resistance of the voltmeter. The voltmeter provides another conducting route through which the capacitor can discharge, effectively lowering the resistance of the circuit. This causes all the readings of *T* to be less than they should have been.

2 (b) (i) What type of error does this cause in your measurements for T?

(1 *mark*)

Figure 8 illustrates how the resistance of the voltmeter affects the experiment.

Figure 8

2 (b) (ii) Explain with reference to Figure 8 whether the results of your experiment indicate that the resistance of the voltmeter you used was small enough to cause an error of this type.

(1 mark)

8

Turn over for next question